Hierarchical cluster ensemble selection

نویسندگان

  • Ebrahim Akbari
  • Halina Mohamed Dahlan
  • Roliana Ibrahim
  • Hosein Alizadeh
چکیده

Clustering ensemble performance is affected by two main factors: diversity and quality. Selection of a subset of available ensemble members based on diversity and quality often leads to a more accurate ensemble solution. However, there is not a certain relationship between diversity and quality in selection of subset of ensemble members. This paper proposes the Hierarchical Cluster Ensemble Selection (HCES) method and diversity measure to explore how diversity and quality affect final results. The HCES uses single-link, average-link, and complete link agglomerative clustering methods for the selection of ensemble members hierarchically. A pair-wise diversity measure from the recent literature and the proposed diversity measure are applied to these agglomerative clustering algorithms. Using the proposed diversity measure in HCES leads to more diverse ensemble members than that of pairwise diversity measure. Cluster-based Similarity Partition Algorithm (CSPA) and Hypergraph-Partitioning Algorithm (HGPA) were employed in HCES method for obtaining the full ensemble and cluster ensemble selection solution. To evaluate the performance of the HCES method, several experiments were conducted on several real data sets and the obtained results were compared to those of full ensembles. The results showed that the HCES method led to a more significant performance improvement compared with full ensembles. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Partition Selection Approach for Hierarchical Clustering Based on Clustering Ensemble

Hierarchical clustering algorithms are widely used in many fields of investigation. They provide a hierarchy of partitions of the same dataset. However, in many practical problems, the selection of a representative level (partition) in the hierarchy is needed. The classical approach to do so is by using a cluster validity index to select the best partition according to the criterion imposed by ...

متن کامل

Applying Cluster Ensemble to Adaptive Tree Structured Clustering

Adaptive tree structured clustering (ATSC) is our proposed divisive hierarchical clustering method that recursively divides a data set into 2 subsets using self-organizing feature map (SOM). In each partition, the data set is quantized by SOM and the quantized data is divided using agglomerative hierarchical clustering. ATSC can divide data sets regardless of data size in feasible time. On the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2015